Development of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific.
نویسندگان
چکیده
Synaptic integration is modulated by inhibition onto the dendrites of postsynaptic cells. However, presynaptic inhibition at axonal terminals also plays a critical role in the regulation of neurotransmission. In contrast to the development of inhibitory synapses onto dendrites, GABAergic/glycinergic synaptogenesis onto axon terminals has not been widely studied. Because retinal bipolar cells receive subclass-specific patterns of GABAergic and glycinergic presynaptic inhibition, they are a good model for studying the development of inhibition at axon terminals. Here, using whole cell recording methods and transgenic mice in which subclasses of retinal bipolar cells are labeled, we determined the temporal sequence and patterning of functional GABAergic and glycinergic input onto the major subclasses of bipolar cells. We found that the maturation of GABAergic and glycinergic synapses onto the axons of rod bipolar cells (RBCs), on-cone bipolar cells (ON-CBCs) and off-cone bipolar cells (OFF-CBCs) were temporally distinct: spontaneous chloride-mediated currents are present in RBCs earlier in development compared with ON- and OFF-CBC, and RBCs receive GABAergic and glycinergic input simultaneously, whereas in OFF-CBCs, glycinergic transmission emerges before GABAergic transmission. Because on-CBCs show little inhibitory activity, GABAergic and glycinergic events could not be pharmacologically distinguished for these bipolar cells. The balance of GABAergic and glycinergic input that is unique to RBCs and OFF-CBCs is established shortly after the onset of synapse formation and precedes visual experience. Our data suggest that presynaptic modulation of glutamate transmission from bipolar cells matures rapidly and is differentially coordinated for GABAergic and glycinergic synapses onto distinct bipolar cell subclasses.
منابع مشابه
Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells.
The inhibitory surround signal in retinal ganglion cells is usually attributed to lateral horizontal cell signaling in the outer plexiform layer (OPL). However, recent evidence suggests that lateral inhibition at the inner plexiform layer (IPL) also contributes to the ganglion cell receptive field surround. Although amacrine cell input to ganglion cells mediates a component of this lateral inhi...
متن کاملReceptive field properties of bipolar cell axon terminals in direction-selective sublaminas of the mouse retina.
Retinal bipolar cells (BCs) transmit visual signals in parallel channels from the outer to the inner retina, where they provide glutamatergic inputs to specific networks of amacrine and ganglion cells. Intricate network computation at BC axon terminals has been proposed as a mechanism for complex network computation, such as direction selectivity, but direct knowledge of the receptive field pro...
متن کاملDevelopmental Regulation and Activity-Dependent Maintenance of GABAergic Presynaptic Inhibition onto Rod Bipolar Cell Axonal Terminals
Presynaptic inhibition onto axons regulates neuronal output, but how such inhibitory synapses develop and are maintained in vivo remains unclear. Axon terminals of glutamatergic retinal rod bipolar cells (RBCs) receive GABAA and GABAC receptor-mediated synaptic inhibition. We found that perturbing GABAergic or glutamatergic neurotransmission does not prevent GABAergic synaptogenesis onto RBC ax...
متن کاملDistinct ionotropic GABA receptors mediate presynaptic and postsynaptic inhibition in retinal bipolar cells.
Ionotropic GABA receptors can mediate presynaptic and postsynaptic inhibition. We assessed the contributions of GABA(A) and GABA(C) receptors to inhibition at the dendrites and axon terminals of ferret retinal bipolar cells by recording currents evoked by focal application of GABA in the retinal slice. Currents elicited at the dendrites were mediated predominantly by GABA(A) receptors, whereas ...
متن کاملGABA transporters regulate a standing GABAC receptor-mediated current at a retinal presynaptic terminal.
At the axon terminal of goldfish retinal bipolar cells, GABA(C) receptors have been shown to mediate inhibitory reciprocal synaptic currents. Here, we demonstrate a novel standing GABAergic current mediated exclusively by GABA(C) receptors. Selective inhibition of GAT-1 GABA transporters on amacrine cells increases this tonic current and reveals a specific functional coupling between GAT-1 tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 100 1 شماره
صفحات -
تاریخ انتشار 2008